Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
van_der_Hooft, Justin_J J (Ed.)ABSTRACT Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, includingMeandrina meandrites,Orbicella faveolata,Colpophyllia natans, andMontastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes ofMeandrina meandritesdisplayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCEPrevious research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance.more » « less
-
Abstract An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis with and without attachment in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from livePseudoalteromonasbacteria is the primary stimulant of coral metamorphosis. In this study, we create aPseudoalteromonassp. PS5 mutant lacking the TBP brominase gene,bmp2. Using this mutant, we confirm that thebmp2gene is critical for TBP biosynthesis inPseudoalteromonassp. PS5. Mutation of this gene ablates the bacterium’s ability in live cultures to stimulate the metamorphosis of the stony coralPorites astreoides. We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, wherePseudoalteromonassp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling ofPseudoalteromonassp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for coral restoration.more » « less
An official website of the United States government
